search
Log In
Welcome to GATE BioTechnology, where you can ask questions and receive answers from other members of the community.
0 votes

If $A = \begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix}$, then $A^2+3A$ will be

  1. $\begin{bmatrix} 30 & 20 \\ 10 & 20 \end{bmatrix} \\$
  2. $\begin{bmatrix} 28 & 10 \\ 4 & 18 \end{bmatrix} \\$
  3. $\begin{bmatrix} 31 & 13 \\ 7 & 21 \end{bmatrix} \\$
  4. $\begin{bmatrix} 20 & 10 \\ 5 & 15 \end{bmatrix}$
in Linear Algebra 7.9k points
recategorized by

Please log in or register to answer this question.

Answer:

Related questions

0 votes
0 answers
1
If $P=\begin{bmatrix}1&1\\2&2\end{bmatrix}, Q=\begin{bmatrix}2&1\\2&2\end{bmatrix}$ and $R=\begin{bmatrix}3&0\\1&3\end{bmatrix}$, which one of the following statements is $TRUE$? $PQ=PR$ $QR= RP$ $OP=RP$ $PO= OR$
asked Mar 26, 2018 in Linear Algebra Milicevic3306 7.9k points
0 votes
0 answers
2
What are the eigenvalues of the following matrix? $\begin{bmatrix} 1 & 1 \\ -2 & 4 \end{bmatrix}$ $2$ and $3$ $-2$ and $3$ $2$ and $-3$ $-2$ and $-3$
asked Mar 26, 2018 in Linear Algebra Milicevic3306 7.9k points
0 votes
0 answers
3
$\begin{array}{cc} 2x_1+ x_2 = 35 \\ 5x_1 + bx_2 = 7.5 \end{array}$ The system of linear equations in two variables shown above will have infinite solutions, if and only if, $b$ is equal to _________
asked Mar 26, 2018 in Linear Algebra Milicevic3306 7.9k points
0 votes
0 answers
4
The determinant of matrix $A = \begin{pmatrix} 1 & 1& 1 & 1 \\ -1 & 1 & 1 & 1 \\ -1 & -1 & 1 & 1 \\ 1 & 1 & 1 & 3 \end{pmatrix}$ is __________.
asked Mar 1 in Linear Algebra jothee 1.4k points
0 votes
0 answers
5
The largest eigenvalue of the matrix $\begin{bmatrix} 4 &1 \\ -2& 1 \end{bmatrix}$ is ______________.
asked Nov 3, 2020 in Linear Algebra soujanyareddy13 2.7k points
...