0 votes
0 votes

In the following diagram, the point $\text{R}$ is the center of the circle. The lines $\text{PQ}$ and $\text{ZV}$ are tangential to the circle. The relation among the areas of the squares, $\text{PXWR, RUVZ}$ and $\text{SPQT}$ is

  1. Area of $\text{SPQT}$ = Area of $\text{RUVZ}$ – Area of $\text{PXWR}$
  2. Area of $\text{SPQT}$ = Area of $\text{PXWR}$ –  Area of $\text{RUVZ}$
  3. Area of $\text{PXWR}$ = Area of $\text{SPQT}$ – Area of $\text{RUVZ}$
  4. Area of $\text{PXWR}$ = Area of $\text{RUVZ}$ – Area of $\text{SPQT}$
in Quantitative Aptitude edited by
1.4k points

Please log in or register to answer this question.

Answer:

Related questions

Welcome to GATE BioTechnology, where you can ask questions and receive answers from other members of the community.