# Recent questions in Engineering Mathematics 1
The eigenvalues of A =$\begin{bmatrix} 1&-4\\2 & -3 \end{bmatrix}$are $2\underline{+}i$ $-1, -2$ $-1\underline{+}2i$ non-existent
2
If an unbiased coin is tossed $10$ times, the probability that all outcomes are same will be____ x$10^{-5}$
3
The solution for the following set of equations is, $5x+4y+102=13$ $x+3y+z=7$ $4x2y+z=0$ $x=2,y=1,z=1$ $x=1,y=2,z=0$ $x=1,y=0,z=2$ $x=0,y=1,z=2$
4
The limit of the function $e^{-2t}sin (t)$ as t $\rightarrow\infty$ so, is
5
The solution to the following set of equations is $2x+3y=4$ $4x+6y=0$ $x=0,y=0$ $x=2, y=0$ $4x=-6y$ No solution
6
The algorithm for BLAST is based on Dynamic Programming Hidden Markov Model k-tuple analysis Neural Network
7
If $\text{|-2X + 9| = 3}$ then the possible value of $|-X|-X^2$ would be: $30$ $-30$ $-42$ $42$
8
The solution to $\frac {dy}{dx}+y \cot x=cosec\;x$ is $y=(c+x)\cot x$ $y=(c+x)cosec\;x$ $y=(c+x)cosec\;x\cot x$ $y=(c+x)\frac{cosec\;x}{\cot x}$
9
Evaluate $\underset{x\rightarrow\infty }{lim}x\tan\frac{1}{x}$ $\infty$ $1$ $0$ $-1$
10
The Laplace transform of $f(t) = 2t + 6$ is $\frac{1}{s}+\frac{2}{s^2}$ $\frac{3}{s}-\frac{6}{s^2}$ $\frac{6}{s}+\frac{2}{s^2}$ $-\frac{6}{s}+\frac{2}{s^2}$
11
The solution of the following set of equations is $x+2y+3z=20$ $7x+3y+z=13$ $x+6y+2z=0$ $\text{x=-2, y=2, z=8}$ $\text{x=2, y=-3, z=8}$ $\text{x=2, y=3, z=-8}$ $\text{x=8, y=2, z=-3}$
12
One of theeigcn values of $P=\begin{bmatrix}10 & -4 \\ 18 & -12\end{bmatrix}$ is $2$ $4$ $6$ $8$
13
If $P=\begin{bmatrix}1&1\\2&2\end{bmatrix}, Q=\begin{bmatrix}2&1\\2&2\end{bmatrix}$ and $R=\begin{bmatrix}3&0\\1&3\end{bmatrix}$, which one of the following statements is $TRUE$? $PQ=PR$ $QR= RP$ $OP=RP$ $PO= OR$
If $u=log (e^x+e^y),$ then $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=$ $e^x+e^y$ $e^x-e^y$ $\frac{1}{e^x+e^y}$ $1$